China wholesaler Worm Gear for Truck Mounted Crane 17′′

Product Description

CHINAMFG Bearing is short for HangZhou CHINAMFG SPECIAL HEAVY-DUTY AND LARGE BEARING MANUFACTURING CO., LTD.

. Introduction of CHINAMFG heavy load slewing drive
Slewing Drive is also called slewing gear, worm gear, worm drive, rotary drive, slew drive, worm gear reducer and rotary drive unit. At present the majority of such devices are caller Slewing Drive.
CHINAMFG heavy load slewing drive is usually composed of a slewing ring, worm, casting housing, and standard components likebearing and bolts, etc. While used in photovoltaic power generation system, the slewing drive is usually used in combination with DC planetary speed reducer motor and AC speed reducer motor. While used in engineering equipment, it is regularly used in combination with hydraulic motor to function as power driving system.

2. Structure
According to the raceway diameter of the slewing ring, a heavy load slewing drive include M3 ich, M5 inch, M7 inch, M9 inch, M12 inch, M14 inch, M17 inch, M21 inch, M25inch, H14 inch, H17 inch, H21 inch and H25 inch.

3. Features:
Heavy load slewing drive is a special bearing. And a slewing drive is usually composed of a slewing ring, worm, casting housing, and standard components like bearing and bolts, etc.
Slewing drive is able to sustain more axial load, radial load and tilting moment. Turntable or frame rotates at azimuth and elevation driven by slewing drive.

4. Application:
Slewing drives are widely used in solar power generation tracking system, timber grab, special vehicle, heavy-duty flat-panel truck, container cranes, overhead working truck, truck mounted crane, automobile crane and aerial vehicles, cranes, gantry cranes, small wind power stations, space communications, satellite receiver, etc.

CHINAMFG can also design and make other standard and non-standard Slewing Drives as per customer’s different technical requirements. For more information about the slewing drive, please contact CHINAMFG Bearing sales department. We will give you the best technical support.

Model Rated output torque /KN-m Tilting Moment torque /KN-m Load /KN Gear ratio Self-locking gears Weight (KG)
Static load rating, axial Static load rating,radial Dynamic load rating, axial Dynamic load rating,radial
3″ 0.25 0.5 30 16.6 9.6 8.4 62:01:00 yes 12
5″ 0.37 0.8 76 22.6 13.8 11.8 62:01:00 yes 18
7″ 1.3 13.5 133 53 32 28 73:01:00 yes 23
9″ 9.2 33.9 338 135 81 71 61:01:00 yes 50
12″ 11.7 54.3 475 190 114 100 78:01:00 yes 60
14″ 12.7 67.8 555 222 133 117 85:01:00 yes 73
17″ 18.5 135.6 975 390 235 205 102:01:00 yes 110
21″ 29 203 1598 640 385 335 125:01:00 yes 158
25″ 34 271 2360 945 590 470 150:01:00 yes 230

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Truck Mounted Crane
Hardness: Hardened
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Curved Gear
Material: Bearing Steel
Type: Worm And Wormwheel
Customization:
Available

|

Are there innovations or advancements in worm wheel technology that have emerged in recent years?

Yes, there have been significant innovations and advancements in worm wheel technology in recent years. Here’s a detailed explanation of some notable developments:

  • Improved Materials: The development of new materials and advanced manufacturing techniques has contributed to improved performance and durability of worm wheels. High-performance materials such as hardened steels, alloys, and composite materials are being used to enhance the strength, wear resistance, and load-carrying capacity of worm wheels. These materials offer better fatigue resistance, reduced friction, and increased efficiency, leading to longer service life and improved overall performance.
  • Enhanced Tooth Profile Design: Innovations in tooth profile design have focused on optimizing the contact pattern, load distribution, and efficiency of worm wheels. Advanced computer-aided design (CAD) and simulation tools enable the modeling and analysis of complex tooth profiles, resulting in improved gear meshing and reduced losses. Modified tooth profiles, such as helical or curved teeth, are being employed to minimize sliding friction, increase tooth engagement, and enhance overall efficiency.
  • Surface Treatments and Coatings: Surface treatments and coatings are being used to improve the wear resistance, reduce friction, and enhance the performance of worm wheels. Technologies such as nitriding, carburizing, and diamond-like carbon (DLC) coatings are applied to the gear surfaces to increase hardness, reduce friction, and minimize wear. These treatments and coatings improve the efficiency and extend the lifespan of worm wheels, particularly in demanding applications with high loads or harsh operating conditions.
  • Advanced Manufacturing Techniques: Innovations in manufacturing techniques have enabled the production of worm wheels with higher precision, tighter tolerances, and improved surface finishes. Technologies such as computer numerical control (CNC) machining, 3D printing, and advanced grinding methods allow for the production of complex geometries and accurate tooth profiles. These advancements result in better gear meshing, reduced noise, improved efficiency, and enhanced overall performance of worm wheel systems.
  • Integrated Lubrication Systems: Integrated lubrication systems have been developed to optimize the lubrication process and improve the efficiency of worm wheels. These systems use precise oil delivery mechanisms, such as micro-pumps or spray nozzles, to deliver lubricant directly to the meshing surfaces. The controlled and targeted lubrication ensures proper lubricant film formation, reduces frictional losses, and minimizes wear. Integrated lubrication systems also help to maintain consistent lubricant quality and reduce the need for manual lubrication maintenance.
  • Smart Monitoring and Predictive Maintenance: Advancements in sensor technology, data analytics, and connectivity have facilitated the implementation of smart monitoring and predictive maintenance strategies for worm wheel systems. Sensors embedded in the gear assembly can collect real-time data on parameters such as temperature, vibration, or load. This data is then analyzed using machine learning algorithms to detect anomalies, predict potential failures, and optimize maintenance schedules. Smart monitoring and predictive maintenance help to maximize uptime, reduce downtime, and improve the overall reliability and efficiency of worm wheel systems.

These recent innovations and advancements in worm wheel technology have resulted in improved performance, efficiency, durability, and reliability of worm wheel systems. Continued research and development in this field are expected to drive further advancements and expand the capabilities of worm wheel technology in various applications.

What role do worm wheels play in controlling speed and torque in mechanical assemblies?

Worm wheels play a crucial role in controlling speed and torque in mechanical assemblies. Here’s a detailed explanation of how worm wheels contribute to speed and torque control:

  • Gear Reduction: One of the primary functions of worm wheels is to provide gear reduction. The helical teeth of the worm gear engage with the teeth of the worm wheel, resulting in a rotational output that is slower than the input speed. The gear reduction ratio is determined by the number of threads on the worm wheel and the pitch diameter of the gear. By controlling the gear reduction ratio, worm wheels enable precise speed control in mechanical assemblies.
  • Speed Control: Worm wheels allow for fine control of rotational speed in mechanical assemblies. The high gear reduction ratio achievable with worm wheels enables slower output speeds, making them suitable for applications that require precise speed regulation. By adjusting the number of threads on the worm wheel or the pitch diameter of the gear, the speed output can be precisely controlled to match the requirements of the application.
  • Torque Amplification: Worm wheels are capable of amplifying torque in mechanical assemblies. The helical tooth engagement between the worm gear and the worm wheel creates a mechanical advantage, resulting in increased torque at the output. This torque amplification allows worm wheels to transmit higher torque levels while maintaining a compact design. The ability to control torque amplification makes worm wheels suitable for applications that require high torque output, such as lifting mechanisms, conveyors, or heavy machinery.
  • Torque Limiting: Worm wheels also provide torque limiting capabilities in mechanical assemblies. The self-locking nature of the worm wheel prevents reverse motion or backdriving from the output side to the input side. This self-locking property acts as a torque limiter, restricting excessive torque transmission and protecting the system from overload or damage. The torque limiting feature of worm wheels ensures safe and controlled operation in applications where torque limitation is critical, such as safety mechanisms or overload protection devices.
  • Directional Control: Worm wheels offer precise directional control in mechanical assemblies. The helical tooth engagement between the worm gear and the worm wheel allows for power transmission in a single direction. The self-locking property of the worm wheel prevents reverse motion, ensuring that the output shaft remains stationary when the input is not actively driving it. This directional control is beneficial in applications that require precise positioning or unidirectional motion, such as indexing mechanisms or robotic systems.
  • Load Distribution: Worm wheels play a role in distributing the load in mechanical assemblies. The sliding action between the worm gear and the worm wheel creates a larger contact area compared to other gear types. This increased contact area allows for better load distribution, minimizing stress concentration and ensuring even distribution of forces. By distributing the load effectively, worm wheels contribute to the longevity and reliability of mechanical assemblies.

Overall, worm wheels provide precise speed control, torque amplification, torque limiting, directional control, and load distribution capabilities in mechanical assemblies. These features make worm wheels versatile components that are widely used in various applications where precise control, torque management, and reliable performance are essential.

What are the advantages of using a worm wheel in gearing systems?

Using a worm wheel in gearing systems offers several advantages, making it a popular choice for various applications. Here’s a detailed explanation of the advantages of using a worm wheel:

  • High Gear Reduction: Worm wheels provide significant gear reduction ratios, allowing for large speed reductions and high torque output. The helical shape of the worm gear teeth and the interaction with the worm enable gear ratios ranging from 5:1 to 100:1 or even higher. This makes worm wheels suitable for applications that require high torque and low-speed operation.
  • Compact Design: The perpendicular arrangement of the worm gear and the worm wheel allows for a compact design, making efficient use of space. This is especially beneficial in applications where space is limited or where a compact and lightweight design is desired.
  • Self-Locking: One of the unique properties of a worm wheel system is its inherent self-locking ability. Due to the sliding action and the angle of the helical teeth, the worm wheel can hold its position and prevent backdriving. This means that even when the driving force is removed, the worm wheel remains locked in place, enhancing safety and stability in applications where position holding is critical.
  • High Torque Capability: The sliding action and increased tooth engagement of the worm wheel design allow for a larger contact area between the worm gear and the worm wheel. This results in higher torque transmission capacity compared to other gear types, making worm wheels suitable for applications requiring high torque output.
  • Quiet Operation: The sliding action between the worm gear and the worm wheel results in smoother and quieter operation compared to other gear types. The helical teeth of the worm wheel help distribute the load over multiple teeth, reducing noise and vibration, and providing a smoother transmission of power.
  • Directional Control: Worm wheels offer excellent directional control, allowing power transmission in a single direction only. The self-locking nature of the worm wheel prevents any reverse motion from the output side to the input side. This property is advantageous in applications where precise motion control and prevention of backward movement are required.
  • Efficient Power Transmission: The sliding action, larger contact area, and self-locking nature of the worm wheel design contribute to efficient power transmission. The reduced friction and wear, along with the optimized tooth engagement, help minimize energy losses, improve overall system efficiency, and reduce the need for frequent maintenance.
  • Versatility: Worm wheels can be manufactured in various sizes, materials, and configurations to suit different application requirements. They can be customized to meet specific torque, speed, and space constraints, making them versatile for a wide range of applications across industries.

These advantages make worm wheels suitable for a variety of applications, including automotive, industrial machinery, elevators, robotics, and more. However, it’s important to consider factors such as lubrication, proper gear meshing, and maintenance to ensure the reliable and efficient operation of worm wheel systems.

China wholesaler Worm Gear for Truck Mounted Crane 17′′  China wholesaler Worm Gear for Truck Mounted Crane 17′′
editor by Dream 2024-04-29